Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application

نویسندگان

  • Saptarshi Chatterjee
  • Arghya Bandyopadhyay
  • Keka Sarkar
چکیده

BACKGROUND Nanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities. The biological system being extremely critical requires the fundamental understanding on the influence of inorganic nanoparticles on cellular growth and functions. Our study was aimed to find out the effect of iron oxide (Fe3O4), gold (Au) nanoparticles on cellular growth of Escherichia coli (E. coli) and also try to channelize the obtained result by functionalizing the Au nanoparticle for further biological applications. RESULT Fe3O4 and Au nanoparticles were prepared and characterized using Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). Preliminary growth analysis data suggest that the nanoparticles of iron oxide have an inhibitory effect on E. coli in a concentration dependant manner, whereas the gold nanoparticle directly showed no such activity. However the phase contrast microscopic study clearly demonstrated that the effect of both Fe3O4 and Au nanoparticle extended up to the level of cell division which was evident as the abrupt increase in bacterial cell length. The incorporation of gold nanoparticle by bacterial cell was also observed during microscopic analysis based on which glutathione functionalized gold nanoparticle was prepared and used as a vector for plasmid DNA transport within bacterial cell. CONCLUSION Altogether the study suggests that there is metal nanoparticle-bacteria interaction at the cellular level that can be utilized for beneficial biological application but significantly it also posses potential to produce ecotoxicity, challenging the ecofriendly nature of nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The anti-bacterial effects of magnetic iron oxide nanoparticles produced by biological method and the kinetic study of mortality of common strains in clinical infections

New properties of nano-materials have made nanotechnology the leading part of biology and medical sciences. Due to their various biomedical properties, iron-based magnetic nanoparticles (MNPs) have been highly considered by biological researchers. Nowadays, increasing resistance to antibiotics is a major problem in treating clinical infections. Finding new antibacterial agents is therefore esse...

متن کامل

Comparison of Inhibitory Effects of Silver and Zinc Oxide Nanoparticles on the Growth of Plant Pathogenic Bacteria

In this research, the inhibitory effects of silver nanoparticles and zinc oxide nanoparticles,  in vitro, on disease stone fruits bacterial canker caused by Pseudomonas syrigae pv. Syringae and disease bacterial blight caused by Xanthomonas arboricola pv. juglandis, were studied. Different concentrations of nanoparticles were prepared on Mueller Hinton agar medium in two different ways in a com...

متن کامل

Comparison of Inhibitory Effects of Silver and Zinc Oxide Nanoparticles on the Growth of Plant Pathogenic Bacteria

In this research, the inhibitory effects of silver nanoparticles and zinc oxide nanoparticles,  in vitro, on disease stone fruits bacterial canker caused by Pseudomonas syrigae pv. Syringae and disease bacterial blight caused by Xanthomonas arboricola pv. juglandis, were studied. Different concentrations of nanoparticles were prepared on Mueller Hinton agar medium in two different ways in a com...

متن کامل

The Effect of Gold and Iron-Oxide Nanoparticles on Biofilm-Forming Pathogens

Microbial biofilms on biomaterial implants or devices are hard to eliminate by antibiotics due to their protection by exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune-cells. Application of metals in their nanoparticulated form is currently considered to resolve bacterial infections. Gold and iron-oxide nanoparticles are widely used in di...

متن کامل

Synthesis and Cytotoxicity Assessment of Gold-coated Magnetic Iron Oxide Nanoparticles

Introduction: One class of magnetic nanoparticles is magnetic iron oxide nanoparticles (MIONs) which has been widely offered due to of their many advantages. Owing to the extensive application of MIONs in biomedicine, before they can be used in vivo, their cytotoxicity have to be investigated. Therefore, there is an urgent need for understanding the potential risks associated with MIONs.Materia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2011